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qustop, Release 0.0.1

qustop (QUantum STate OPtimizer) is a Python package for investigating various quantum state optimization scenar-
ios including calculating optimal values for quantum state distinguishability, quantum state exclusion, quantum state
cloning, and more.

GETTING STARTED 1

https://travis-ci.org/vprusso/qustop
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CHAPTER

ONE

INSTALLING

The qustop package can be installed from PyPi via

pip install qustop

To build from source, you may also run the following command from the top-level package directory.

python setup.py install

To test installation, run

>>> import qustop
>>> qustop.about()

qustop: Quantum Optimizer: A Python toolkit for computing optimal values of various␣
→˓convex
optimization problems in quantum information.
==============================================================================
Authored by: Vincent Russo, 2021

Core Dependencies
-----------------
CVXPY Version: 1.1.13
NumPy Version: 1.21.0
SciPy Version: 1.6.3
Optional Dependencies
---------------------
Python Version: 3.9.2
Platform Info: Darwin (x86_64)

This prints out version information about core requirements and optional conic optimization software packages that
qustop can interface with.

3
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CHAPTER

TWO

TESTING

The pytest module is used for testing. In order to run and pytest, you will need to ensure it is installed on your
machine. Consult the pytest website for more information. To run the suite of tests for qustop, run the following
command in the root directory of this project:

pytest --cov-report term-missing --cov=qustop tests/

5
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CHAPTER

THREE

CONTRIBUTING

All contributions, bug reports, bug fixes, documentation improvements, enhancements, and ideas are welcome.

A detailed overview on how to contribute can be found in the contributing guide.

7
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FOUR

CITING

You can cite qustop using the following DOI: XXX.

If you are using the qustop software package in research work, please include an explicit mention of qustop in your
publication. Something along the lines of:

To solve problem “X” we used qustop; a package for studying quantum state optimization scenarios.

A BibTeX entry that you can use to cite qustop is provided here:

@misc{qustop,
author = {Vincent Russo},
title = {qustop: A {P}ython package for investigating quantum state␣

→˓optimization, version 0.1},
howpublished = {\url{https://github.com/vprusso/qustop}},
month = May,
year = 2021,
doi = {XXX}

}

9
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CHAPTER

FIVE

INTRODUCTORY TUTORIAL

This tutorial will illustrate the basics of how to use qustop.

This is a user guide for qustop and is not meant to serve as an introduction to quantum information. For introductory
material on quantum information, please consult “Quantum Information and Quantum Computation” by Nielsen and
Chuang or the freely available lecture notes “Introduction to Quantum Computing” by John Watrous.

More advanced tutorials can be found on the main documentation directory.

This tutorial assumes you have qustop installed on your machine. If you do not, please consult the getting started
instructions.

5.1 States, ensembles, and measurements

Quantum states, and collections of those quantum states that form ensembles, are the core building blocks of qustop.

5.1.1 Quantum states

A quantum state is a density operator

𝜌 ∈ D(C𝑑)

where C𝑑 is a complex Euclidean space of dimension 𝑑 and where D(·) represents the set of density matrices, that is,
the set of matrices that are positive semidefinite with trace equal to 1. We will typically represent complex Euclidean
spaces using the scripted capital letters 𝒜,ℬ,𝒳 ,𝒴 , etc.

Consider the density matrix corresponding to one of the four Bell states

𝜌0 = |𝜓0⟩⟨𝜓0| =
1

2

⎛⎜⎜⎝
1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1

⎞⎟⎟⎠ ∈ D(𝒜⊗ ℬ)

where

|𝜓0⟩ =
1√
2

(|00⟩ + |11⟩) ∈ 𝒜⊗ ℬ

such that 𝒜 = C2 and ℬ = C2. We can use qustop to encode this state as follows.

11
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qustop, Release 0.0.1

import numpy as np
from qustop import State

# Define the |0> and |1> ket vectors.
q_0 = np.array([[1, 0]]).T
q_1 = np.array([[0, 1]]).T

# Define the respective dimensions of each complex Euclidean space.
dims = [2, 2]

# Define the Bell state vector.
psi_0 = 1/np.sqrt(2) * np.kron(q_0, q_0) + 1/np.sqrt(2) * np.kron(q_1, q_1)

# Define a `State` object corresponding to the Bell vector.
rho_0 = State(psi_0, dims)

Printing the rho_0 variable gives some further information about the state.

>>> print(rho_0)
State:
dimensions = [2, 2],
spaces = ^2 ^2,
labels = A_1 B_2,
pure = True,
shape = (4, 4),

For instance, we see the shape attribute gives information about the size of the density matrix of the state. There is
also information about the subsystems along with which party the subsystems belong to (either Alice or Bob), whether
the state is pure, etc.

We can use the value property of any State object to obtain the numpy matrix representation of the quantum state

>>> print(rho_0.value)
[[0.5 0. 0. 0.5]
[0. 0. 0. 0. ]
[0. 0. 0. 0. ]
[0.5 0. 0. 0.5]]

We can also do things like take tensor products of State objects.

>>> sigma_0 = rho_0.kron(rho_0)
>>> print(sigma_0)
State:
dimensions = [2, 2, 2, 2],
spaces = ^2 ^2 ^2 ^2,
labels = A_1 B_2 A_3 B_4,
pure = True,
shape = (16, 16),

It is sometimes convenient to swap the subsystems of a given state. For instance, this example shows how we can swap
the second and third subsystems of the sigma_0 state.

>>> sigma_0.swap([2, 3])
>>> print(sigma_0)

(continues on next page)
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(continued from previous page)

State:
dimensions = [2, 2, 2, 2],
spaces = ^2 ^2 ^2 ^2,
labels = A_1 A_3 B_2 B_4,
pure = True,
shape = (16, 16),

Notice how the A_3 and B_2 subsystems are swapped.

5.1.2 Ensembles

An ensemble is a collection of 𝑁 quantum states defined over some complex Euclidean space 𝒳 as

𝜂 = {(𝑝1, 𝜌1), . . . , (𝑝𝑁 , 𝜌𝑁 )} ,

where (𝑝1, . . . , 𝑝𝑁 ) is a vector of probability values and where 𝜌1, . . . , 𝜌𝑁 ∈ D(𝒳 ) are quantum states.

Recall the four two-qubit Bell states

|𝜓0⟩ =
|00⟩ + |11⟩√

2
, |𝜓1⟩ =

|01⟩ + |10⟩√
2

,

|𝜓2⟩ =
|01⟩ − |10⟩√

2
, |𝜓3⟩ =

|00⟩ − |11⟩√
2

.

(5.1)

|𝜓3⟩ =
|00⟩ − |11⟩√

2
.

The corresponding density operators may be defined as

𝜌0 = |𝜓0⟩⟨𝜓0|, 𝜌1 = |𝜓1⟩⟨𝜓1|,
𝜌2 = |𝜓2⟩⟨𝜓2|, 𝜌3 = |𝜓3⟩⟨𝜓3|.

𝜌3 = |𝜓3⟩⟨𝜓3|.

We can define the following ensemble consisting of the Bell states where the probability of selecting any one state from
the ensemble is equal to 1/4:

5.1. States, ensembles, and measurements 13
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𝜂 =

{︂(︂
1

4
, 𝜌0

)︂
,

(︂
1

4
, 𝜌1

)︂
,

(︂
1

4
, 𝜌2

)︂
,

(︂
1

4
, 𝜌3

)︂}︂
.

In qustop, we would define this ensemble like so

from toqito.states import bell
from qustop import State, Ensemble

# Construct the corresponding density matrices of the Bell states.
dims = [2, 2]
states = [

State(bell(0) * bell(0).conj().T, dims),
State(bell(1) * bell(1).conj().T, dims),
State(bell(2) * bell(2).conj().T, dims),
State(bell(3) * bell(3).conj().T, dims)

]
ensemble = Ensemble(states=states, probs=[1/4, 1/4, 1/4, 1/4])

Printing out any Ensemble object gives us some information about the contents:

>>> print(ensemble)
Ensemble:
num_states = 4,
states = _0 _1 _2 _3,
is_mutually_orthogonal = True,
is_linearly_independent = True,

We can see certain pieces of information including how many states are contained in the ensemble, whether the states
in the ensemble are all mutually orthogonal, linearly independent, etc.

We can access any of the states from the Ensemble object using standard array indexing notation. For instance, here
is how we can access the first state in the ensemble.

>>> print(ensemble[0])
State:
dimensions = [2, 2],
spaces = ^2 ^2,
labels = A_1 B_2,
pure = True,
shape = (4, 4),

We may also wish to apply some of the functions that we saw before for State objects onto the entire ensemble. For
instance, here is an example of how we can swap the first and second subsystems of each state in the ensemble.

>>> ensemble.swap([1, 2])
>>> print(ensemble[0])
State:
dimensions = [2, 2],
spaces = ^2 ^2,
labels = B_2 A_1,
pure = True,
shape = (4, 4),

14 Chapter 5. Introductory tutorial
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5.1.3 Measurements

A measurement is defined as a function

𝜇 : Σ → Pos(𝒳 )

for some finite and nonempty set Σ and some complex Euclidean space 𝒳 satisfying the constraint that∑︁
𝑎∈Σ

𝜇(𝑎) = I𝒳 .

There are many different classes of measurements.

5.2 Quantum state distinguishability

Given an ensemble of quantum states, we can consider the setting of quantum state distinguishability. This setting can
be considered as an interaction between two parties–typically denoted as Alice and Bob.

A more in-depth description and tutorial on this setting in qustop can be found in:

• Tutorial : Quantum state distinguishability.

More in-depth descriptions pertaining to quantum state distinguishability under positive, PPT, and separable measure-
ments can be found in:

• Tutorial: Quantum state distinguishability using positive measurements.

• Tutorial: Quantum state distinguishability using PPT measurements.

• Tutorial: Quantum state distinguishability using separable measurements.

5.3 Quantum state exclusion

(Coming soon).

5.4 Quantum state cloning

(Coming soon).

5.2. Quantum state distinguishability 15
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SIX

QUANTUM STATES AND ENSEMBLES
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SEVEN

OPTIMAL QUANTUM STATE DISCRIMINATION
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EIGHT

OPTIMAL QUANTUM STATE EXCLUSION

21



qustop, Release 0.0.1

22 Chapter 8. Optimal quantum state exclusion



CHAPTER

NINE

OPTIMAL QUANTUM STATE CLONING
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CHAPTER

TEN

QUANTUM STATE DISTINGUISHABILITY

In this tutorial we are going to cover the problem of quantum state distinguishability (sometimes analogously referred to
as quantum state discrimination). We are going to briefly describe the problem setting and then describe how one may
use qustop to calculate the optimal probability with which this problem can be solved when given access to certain
measurements.

Further information beyond the scope of this tutorial can be found in the text [WatrousQI] as well as the course
[SikoraSDP].

10.1 The state distinguishability problem

The quantum state distinguishability problem is phrased as follows.

1. Alice possesses an ensemble of 𝑛 quantum states:

𝜂 = ((𝑝0, 𝜌0), . . . , (𝑝𝑛, 𝜌𝑛)) ,

where 𝑝𝑖 is the probability with which state 𝜌𝑖 is selected from the ensemble. Alice picks 𝜌𝑖 with probability 𝑝𝑖 from
her ensemble and sends 𝜌𝑖 to Bob.

2. Bob receives 𝜌𝑖. Both Alice and Bob are aware of how the ensemble is defined but he does not know what index
𝑖 corresponding to the state 𝜌𝑖 he receives from Alice is.

3. Bob wants to guess which of the states from the ensemble he was given. In order to do so, he may measure 𝜌𝑖 to
guess the index 𝑖 for which the state in the ensemble corresponds.

This setting is depicted in the following figure.

Fig. 1: The quantum state distinguishability setting.

25
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10.1.1 Distinguishability methods

• Minimum-error discrimination:

Minimize the average probability of making an error in conclusively identifying the state.

• Unambiguous discrimination:

Never give an incorrect answer, although the answer can be inconclusive.

10.1.2 Distinguishability measurements

Depending on the sets of measurements that Alice and Bob are allowed to use, the optimal probability of distinguishing
a given set of states is characterized by the following image.

Fig. 2: Measurement hierarchy.

That is, the probability that Alice and Bob are able to distinguish using PPT measurements is a natural upper bound on
the optimal probability of distinguishing via separable measurements and so on.

In general:

• LOCC: These are difficult objects to handle mathematically; difficult to design protocols for and difficult to
provide bounds on their power.

• Separable: Separable measurements have a nicer structure than LOCC. Unfortunately, optimizing over separable
measurements in NP-hard.

• PPT: PPT measurements offer a nice structure and there exists efficient techniques that allow one to optimize
over the set of PPT measurements via semidefinite programming.

• Positive: These measurements are the most general and constitute the set of all valid quantum operations that
Alice and Bob can perform. The optimal value of distinguishing via positive operations can be phrased as an
SDP.

10.1.3 Optimal probability of distinguishing a quantum state

The optimal probability of distinguishing using positive measurements serves as an upper bound on the optimal prob-
ability of distinguishing using PPT, separable, and LOCC measurements. Specifically, given an ensemble of quantum
states, 𝜂, it holds that

0 ≤ optLOCC(𝜂) ≤ optSEP(𝜂) ≤ optPPT(𝜂) ≤ optPOS(𝜂) ≤ 1

where:

• optPOS(𝜂) represents the optimal probability of distinguishing using positive measurements,

• optPPT(𝜂) represents the probability of distinguishing via PPT measurements,

• optSEP(𝜂) represents the probability of distinguishing via separable measurements,

• optLOCC(𝜂) represents the probability of distinguishing via LOCC measurements.

26 Chapter 10. Quantum state distinguishability
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CHAPTER

ELEVEN

DISTINGUISHING QUANTUM STATES VIA POSITIVE
MEASUREMENTS

In this tutorial, we are going to show how to make use of qustop to calculate the optimal probability of distinguishing
a state from an ensemble of quantum states when Alice and Bob are allowed to use global (positive) measurements on
their system.

11.1 Minimum-error distinguishability via positive measurements

The optimal probability with which Bob can distinguish the state he is given may be obtained by solving the following
semidefinite program (SDP).

Primal:

maximize:
𝑛∑︁

𝑖=0

𝑝𝑖⟨𝑀𝑖, 𝜌𝑖⟩

subject to:
𝑛∑︁

𝑖=0

𝑀𝑖 = I𝒜⊗ℬ,

𝑀1, . . . ,𝑀𝑛 ∈ Pos(𝒜⊗ ℬ).

Dual:
minimize: Tr(𝑌 )

subject to: 𝑌 − 𝜌𝑖 ∈ Pos(𝒜⊗ ℬ), ∀𝑖 = 1, . . . , 𝑛,

𝑌 ∈ Herm(𝒜⊗ ℬ).

minimize:
Tr(𝑌 )subject to:
𝑌 ∈ Herm(𝒜⊗ ℬ).

The qustop package solves either of these two optimization problems depending on whether the optimal measurements
are required.

For the special case of distinguishing between two states, the probability of optimally distinguishing is exactly

optPOS(𝜂) =
1

2
+

1

4
‖𝜂(0) − 𝜂(1)‖1

29
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where ‖·‖1.

A result of [tWalgate00] shows that any two orthogonal pure states can be distinguished perfectly. This result actually
applies to LOCC measurements and is a stronger claim than just for positive measurements, but since optLOCC(𝜂) ≤
optPOS(𝜂) is true for any ensemble 𝜂, it also holds for positive measurements.

For example, consider the two orthogonal pure states

|𝜓0⟩ =

√︂
3

4
|+⟩ +

√︂
1

4
|−⟩ and |𝜓1⟩ =

√︂
1

4
|+⟩ −

√︂
3

4
|−⟩.

Since |𝜓0⟩ and |𝜓1⟩ are pure and mutually orthogonal, they are able to be perfectly distinguished.

1 import numpy as np
2

3 from qustop import Ensemble, OptDist, State
4

5 # Define single-qubit |+> and |-> basis states.
6 e_p, e_m = (
7 1 / np.sqrt(2) * np.array([[1, 1]]).T,
8 1 / np.sqrt(2) * np.array([[1, -1]]).T,
9 )

10

11 dims = [2]
12 # sqrt(3/4)|+> + sqrt(1/4)|->
13 psi_1 = State(np.sqrt(3 / 4) * e_p + np.sqrt(1 / 4) * e_m, dims)
14 # sqrt(1/4)|+> - sqrt(3/4)|->
15 psi_2 = State(np.sqrt(1 / 4) * e_p - np.sqrt(3 / 4) * e_m, dims)
16

17 # Verify that the states `psi_1` and `psi_2` are pure:
18 print(f"Is psi_1 pure: {psi_1.is_pure}")
19 print(f"Is psi_2 pure: {psi_2.is_pure}")
20

21 ensemble = Ensemble([psi_1, psi_2])
22

23 res = OptDist(ensemble, "pos", "min-error")
24

25 # 0.999999998061445
26 res.solve()
27 print(res.value)
28

29 # The closed-form equation yields: 0.9999999999999999 = 1
30 print(1 / 2 + 1 / 4 * np.linalg.norm(psi_1.value - psi_2.value, ord="nuc"))

Consider now the following two mixed states

|𝜑1⟩ =

√︂
3

4
|+⟩ +

√︂
1

4
|−⟩ and |𝜑2⟩ =

√︂
1

4
|+⟩ +

√︂
3

4
|−⟩.

The following code sample shows that the closed-form equation matches the result obtained from qustop, however,
since they are mixed states and not pure, we are not able to perfectly distinguish them.

1 import numpy as np
2

3 from qustop import Ensemble, OptDist, State
4

(continues on next page)
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(continued from previous page)

5 # Define single-qubit |+> and |-> basis states.
6 e_p, e_m = (
7 1 / np.sqrt(2) * np.array([[1, 1]]).T,
8 1 / np.sqrt(2) * np.array([[1, -1]]).T,
9 )

10

11 dims = [2]
12 # sqrt(3/4) |+> + sqrt(1/4)|->
13 phi_1 = State(np.sqrt(3 / 4) * e_p + np.sqrt(1 / 4) * e_m, dims)
14 # sqrt(1/4) |+> + sqrt(3/4)|->
15 phi_2 = State(np.sqrt(1 / 4) * e_p + np.sqrt(3 / 4) * e_m, dims)
16

17 # Verify that the states `phi_1` and `phi_2` are mixed:
18 print(f"Is phi_1 pure: {phi_1.is_pure}")
19 print(f"Is phi_2 pure: {phi_2.is_pure}")
20

21 ensemble = Ensemble([phi_1, phi_2])
22

23 res = OptDist(ensemble, "pos", "min-error")
24

25 # 0.7500000000609778
26 res.solve()
27 print(res.value)
28

29 # The closed-form equation yields: 3/4
30 print(1 / 2 + 1 / 4 * np.linalg.norm(phi_1.value - phi_2.value, ord="nuc"))

On the note of orthogonality, if the ensemble of states provided consist of all mutually orthogonal states, then it is
possible to distinguish with perfect probability in this special case.

As a prototypical example, consider the four Bell states

|𝜓0⟩ =
|00⟩ + |11⟩√

2
, |𝜓1⟩ =

|01⟩ + |10⟩√
2

,

|𝜓2⟩ =
|01⟩ − |10⟩√

2
, |𝜓3⟩ =

|00⟩ − |11⟩√
2

.

|𝜓3⟩ =
|00⟩ − |11⟩√

2
.

1 from toqito.states import bell
2

3 from qustop import Ensemble, OptDist, State
4

(continues on next page)
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(continued from previous page)

5 dims = [2, 2]
6 ensemble = Ensemble(
7 [
8 State(bell(0), dims),
9 State(bell(1), dims),

10 State(bell(2), dims),
11 State(bell(3), dims),
12 ]
13 )
14

15 # Verify that states in the ensemble are mutually orthogonal:
16 print(f"Are states mutually orthogonal: {ensemble.is_mutually_orthogonal}")
17

18 res = OptDist(ensemble, "pos", "min-error")
19

20 # Mutually orthogonal states are optimally distinguishable--giving
21 # an optimal value of one.
22 res.solve()
23 # 1.0000000000879223
24 print(res.value)

If there are more than two states and those states are not mutually orthogonal, no closed-form equation is known to
exist, so we resort to solving the SDP.

For instance, consider the following set of three non-mutually-orthogonal states

|𝜑1⟩ =

√︂
3

4
|+⟩ +

√︂
1

4
|−⟩, |𝜑2⟩ =

√︂
1

4
|+⟩ +

√︂
3

4
|−⟩,

|𝜑3⟩ =

√︂
1

2
|+⟩ +

√︂
1

2
|−⟩.

1 import numpy as np
2

3 from qustop import Ensemble, OptDist, State
4

5 # Define single-qubit |+> and |-> basis states.
6 e_p, e_m = (
7 1 / np.sqrt(2) * np.array([[1, 1]]).T,
8 1 / np.sqrt(2) * np.array([[1, -1]]).T,
9 )

10

11 dims = [2]
12 ensemble = Ensemble(

(continues on next page)
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(continued from previous page)

13 [
14 State(np.sqrt(3 / 4) * e_p + np.sqrt(1 / 4) * e_m, dims),
15 State(np.sqrt(1 / 4) * e_p + np.sqrt(3 / 4) * e_m, dims),
16 State(np.sqrt(1 / 2) * e_p + np.sqrt(1 / 2) * e_m, dims),
17 ]
18 )
19

20 # Verify that ensemble consists of non-mutually-orthogonal states.:
21 print(f"Is ensemble mutually orthogonal: {ensemble.is_mutually_orthogonal}")
22

23 # For any set of more than two states that are non-mutually orthogonal,
24 # no closed-form expression for optimal distinguishability is known to exist.
25 # Therefore, we must resort to solving the SDP to determine what the optimal
26 # probability is.
27 res = OptDist(ensemble, "pos", "min-error")
28

29 # 0.5000000000237005
30 res.solve()
31 print(res.value)

11.2 Unambiguous distinguishability via positive measurements

The optimal probability with which Bob can distinguish the state he is given unambiguously may be obtained by solving
the following semidefinite program (SDP).

Primal:

maximize:
𝑛∑︁

𝑖=0

𝑝𝑖⟨𝑀𝑖, 𝜌𝑖⟩

subject to:
𝑛+1∑︁
𝑖=0

𝑀𝑖 = I𝒜⊗ℬ,

⟨𝑀𝑖𝜌𝑗⟩ = 0 ∀𝑖 ̸= 𝑗 = 1, . . . , 𝑛

𝑀1, . . . ,𝑀𝑛 ∈ Pos(𝒜⊗ ℬ).

As an example, consider the set of three non-mutually-orthogonal states we considered earlier

|𝜑1⟩ =

√︂
3

4
|+⟩ +

√︂
1

4
|−⟩, |𝜑2⟩ =

√︂
1

4
|+⟩ +

√︂
3

4
|−⟩,

|𝜑3⟩ =

√︂
1

2
|+⟩ +

√︂
1

2
|−⟩.
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The probability to distinguish amongst these states unambiguously gives a value of zero, while the minimum-error
case, as we saw, gave a value of 3/4.

1 import numpy as np
2

3 from qustop import Ensemble, OptDist, State
4

5 # Define single-qubit |+> and |-> basis states.
6 e_p, e_m = (
7 1 / np.sqrt(2) * np.array([[1, 1]]).T,
8 1 / np.sqrt(2) * np.array([[1, -1]]).T,
9 )

10

11 dims = [2]
12 ensemble = Ensemble(
13 [
14 State(np.sqrt(3 / 4) * e_p + np.sqrt(1 / 4) * e_m, dims),
15 State(np.sqrt(1 / 4) * e_p + np.sqrt(3 / 4) * e_m, dims),
16 State(np.sqrt(1 / 2) * e_p + np.sqrt(1 / 2) * e_m, dims),
17 ]
18 )
19

20 res = OptDist(ensemble, "pos", "unambiguous")
21

22 # Probability of distinguishing unambiguously is zero.
23 res.solve()
24 print(res.value)

11.3 References
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CHAPTER

TWELVE

DISTINGUISHING QUANTUM STATES VIA PPT MEASUREMENTS

In this section we will be investigation how to make use of the qustop package to optimally distinguish quantum states
via PPT measurements.

12.1 Minimum-error

In [Cosentino13], an semidefinite program formulation whose optimal value corresponds to the optimal probability of
distinguishing a quantum state from an ensemble using PPT measurements with minimum error was provided. The
primal and dual problems of this SDP are defined as follows.

Primal:

maximize:
𝑘∑︁

𝑗=1

⟨𝑃𝑗 , 𝜌𝑗⟩

subject to: 𝑃1 + · · · + 𝑃𝑘 = I𝒜 ⊗ Iℬ,
𝑃1, . . . , 𝑃𝑘 ∈ PPT(𝒜 : ℬ).

maximize:
𝑘∑︁

𝑗=1

⟨𝑃𝑗 , 𝜌𝑗⟩subject to:

𝑃1, . . . , 𝑃𝑘 ∈ PPT(𝒜 : ℬ).

Dual:

minimize:
1

𝑘
Tr(𝑌 )

subject to: 𝑌 − 𝜌𝑗 ≥ T𝒜(𝑄𝑗), 𝑗 = 1, . . . , 𝑘,

𝑌 ∈ Herm(𝒜⊗ ℬ),

𝑄1, . . . , 𝑄𝑘 ∈ Pos(𝒜⊗ ℬ).

minimize:
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1

𝑘
Tr(𝑌 )subject to:

𝑌 ∈ Herm(𝒜⊗ ℬ),

12.2 Unambiguous

In [Cosentino13], an semidefinite program formulation whose optimal value corresponds to the optimal probability of
distinguishing a quantum state from an ensemble using PPT measurements unambiguously was provided. The primal
and dual problems of this SDP are defined as follows.

Primal:

maximize:
𝑘∑︁

𝑗=1

⟨𝑃𝑗 , 𝜌𝑗⟩

subject to: 𝑃1 + · · · + 𝑃𝑘 = I𝒜 ⊗ Iℬ,
𝑃1, . . . , 𝑃𝑘 ∈ PPT(𝒜 : ℬ),

⟨𝑃𝑖, 𝜌𝑗⟩ = 0, 1 ≤ 𝑖, 𝑗 ≤ 𝑘, 𝑖 ̸= 𝑗.

maximize:
𝑘∑︁

𝑗=1

⟨𝑃𝑗 , 𝜌𝑗⟩subject to:

𝑃1, . . . , 𝑃𝑘 ∈ PPT(𝒜 : ℬ),

Dual:

minimize:
1

𝑘
Tr(𝑌 )

subject to: 𝑌 − 𝜌𝑗 ≥ T𝒜(𝑄𝑗), 𝑗 = 1, . . . , 𝑘,

𝑌 ∈ Herm(𝒜⊗ ℬ),

𝑄1, . . . , 𝑄𝑘 ∈ Pos(𝒜⊗ ℬ).

minimize:
1

𝑘
Tr(𝑌 )subject to:

𝑌 ∈ Herm(𝒜⊗ ℬ),
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12.2.1 Distinguishing four Bell states

Consider the following Bell states:

|𝜓0⟩ =
|00⟩ + |11⟩√

2
, |𝜓1⟩ =

|01⟩ + |10⟩√
2

,

|𝜓2⟩ =
|01⟩ − |10⟩√

2
, |𝜓3⟩ =

|00⟩ − |11⟩√
2

.

Assuming a uniform probability of selecting from any one of these states, that is, assuming we define an ensemble of
Bell states defined as

B =

{︂(︂
|𝜓0⟩,

1

4

)︂
,

(︂
|𝜓1⟩,

1

4

)︂
,

(︂
|𝜓2⟩,

1

4

)︂
,

(︂
|𝜓3⟩,

1

4

)︂}︂

it holds that

optPPT(B) =
1

2
.

We can observe this using qustop as follows.

1 from toqito.states import bell
2

3 from qustop import Ensemble, OptDist, State
4

5 # Construct the corresponding density matrices of the Bell states.
6 dims = [2, 2]
7 ensemble = Ensemble(
8 [
9 State(bell(0), dims),

10 State(bell(1), dims),
11 State(bell(2), dims),
12 State(bell(3), dims),
13 ],
14 [1 / 4, 1 / 4, 1 / 4, 1 / 4],
15 )
16 res = OptDist(ensemble, "ppt", "min-error")
17 res.solve()

(continues on next page)
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(continued from previous page)

18

19 # 0.5000000000530641
20 print(res.value)

Indeed, a stronger statement is known to hold for B, that is

optLOCC(B) =
1

2
.

Recall that for any ensemble 𝜂, it holds that optLOCC(𝜂) < optPPT(𝜂).

12.2.2 Four indistinguishable orthogonal maximally entangled states

In [YDY12] the following ensemble of states was shown not to be perfectly distinguishable by PPT measurements, and
therefore also indistinguishable via LOCC measurements.

𝜌0 = |𝜓0⟩|𝜓0⟩⟨𝜓0|⟨𝜓0|, 𝜌1 = |𝜓1⟩|𝜓3⟩⟨𝜓1|⟨𝜓3|,
𝜌2 = |𝜓3⟩|𝜓1⟩⟨𝜓3|⟨𝜓1|, 𝜌3 = |𝜓1⟩|𝜓1⟩⟨𝜓1|⟨𝜓1|,

While it was known that perfect distinguishability could not be achieved, the actual value and bound of optimal distin-
guishability was not known. It was shown in [Cosentino13] and later extended in [CR13] that the optimal probability
of distinguishing the above ensemble via a PPT measurement should yield an optimal probability of 7/8.

1 import numpy as np
2 from toqito.states import bell
3

4 from qustop import Ensemble, OptDist, State
5

6 # Define the maximally entangled states from arXiv1107.3224
7 dims = [2, 2, 2, 2]
8 ensemble = Ensemble(
9 [

10 State(np.kron(bell(0), bell(0)) * np.kron(bell(0), bell(0)).conj().T),
11 State(np.kron(bell(2), bell(1)) * np.kron(bell(2), bell(1)).conj().T),
12 State(np.kron(bell(3), bell(1)) * np.kron(bell(3), bell(1)).conj().T),
13 State(np.kron(bell(1), bell(1)) * np.kron(bell(1), bell(1)).conj().T),
14 ]
15 )
16

17 # The min-error probability of distinguishing via PPT
18 # is equal to 7/8.
19 res = OptDist(ensemble, "ppt", "min-error")
20 res.solve()
21

22 # 0.87500000060847
23 print(res.value)

In was also shown in [Cosentino13] that the optimal probability of distinguishing this ensemble unambiguously when
making use of PPT measurements was equal to 3/4.
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1 import numpy as np
2 from toqito.states import bell
3

4 from qustop import Ensemble, OptDist, State
5

6 # Define the maximally entangled states from arXiv1107.3224
7 dims = [2, 2, 2, 2]
8 ensemble = Ensemble(
9 [

10 State(
11 np.kron(bell(0), bell(0)) * np.kron(bell(0), bell(0)).conj().T,
12 dims,
13 ),
14 State(
15 np.kron(bell(2), bell(1)) * np.kron(bell(2), bell(1)).conj().T,
16 dims,
17 ),
18 State(
19 np.kron(bell(3), bell(1)) * np.kron(bell(3), bell(1)).conj().T,
20 dims,
21 ),
22 State(
23 np.kron(bell(1), bell(1)) * np.kron(bell(1), bell(1)).conj().T,
24 dims,
25 ),
26 ]
27 )
28

29 # The unambiguous probability of distinguishing via PPT
30 # is equal to 3/4.
31 res = OptDist(ensemble, "ppt", "unambiguous")
32 res.solve()
33

34 # 0.7499999975754753
35 print(res.value)

12.3 Entanglement cost of distinguishing Bell states

One may ask whether the ability to distinguish a state can be improved by making use of an auxiliary resource state.

|𝜏𝜖⟩ =

√︂
1 + 𝜖

2
|00⟩ +

√︂
1 − 𝜖

2
|11⟩,

for some 𝜖 ∈ [0, 1].
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12.3.1 Distinguishing four Bell states

It was shown in [BCJRWY15] that the probability of distinguishing four Bell states with a resource state via PPT
measurements is given by the closed-form expression:

optPPT(𝜂) = optSEP(𝜂) =
1

2

(︁
1 +

√︀
1 − 𝜖2

)︁

where the ensemble is defined as

𝜂 = {|𝜓0⟩ ⊗ |𝜏𝜖⟩, |𝜓1⟩ ⊗ |𝜏𝜖⟩, |𝜓2⟩ ⊗ |𝜏𝜖⟩, |𝜓3⟩ ⊗ |𝜏𝜖⟩} .

Using qustop, we may encode this scenario as follows.

1 import numpy as np
2 from toqito.states import basis, bell
3

4 from qustop import Ensemble, OptDist, State
5

6 e_0, e_1 = basis(2, 0), basis(2, 1)
7

8 eps = 0.5
9 tau = np.sqrt((1 + eps) / 2) * np.kron(e_0, e_0) + np.sqrt(

10 (1 - eps) / 2
11 ) * np.kron(e_1, e_1)
12

13 dims = [2, 2, 2, 2]
14 ensemble = Ensemble(
15 [
16 State(np.kron(bell(0), tau), dims),
17 State(np.kron(bell(1), tau), dims),
18 State(np.kron(bell(2), tau), dims),
19 State(np.kron(bell(3), tau), dims),
20 ],
21 [1 / 4, 1 / 4, 1 / 4, 1 / 4],
22 )
23

24 ppt_res = OptDist(ensemble, "ppt", "min-error")
25 ppt_res.solve()
26

27 sep_res = OptDist(ensemble, "sep", "min-error")
28 sep_res.solve()
29

30 eq = 1 / 2 * (1 + np.sqrt(1 - eps ** 2))
31

(continues on next page)
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(continued from previous page)

32 # 0.9330127018922193
33 print(eq)
34 # 0.9330127016540999
35 print(ppt_res.value)
36 # 0.9330127016540999
37 print(sep_res.value)

Note that [BCJRWY15] also proved the same closed-form expression for when Alice and Bob make use of separable
measurements. More on that in the tutorial on distinguishing via separable measurements.

12.4 Werner hiding pairs

In [TDL01] and [DLT02], a quantum data hiding protocol that encodes a classical bit in a Werner hiding pair was
provided.

A Werner hiding pair is defined by

𝜎
(𝑛)
0 =

I⊗ I +𝑊𝑛

𝑛(𝑛+ 1)
and 𝜎

(𝑛)
1 =

I⊗ I−𝑊𝑛

𝑛(𝑛− 1)

where

𝑊𝑛 =

𝑛−1∑︁
𝑖,𝑗=0

|𝑖⟩⟨𝑗| ⊗ |𝑗⟩⟨𝑖| ∈ U (C𝑛 ⊗ C𝑛)

is the swap operator defined for some dimension 𝑛 ≥ 2.

It was shown in [Cosentino15] that

optPPT(𝜂) =
1

2
+

1

𝑛+ 1
,

where 𝜂 = {𝜎0, 𝜎1}. Using qustop, we may encode this scenario as follows.

1 import numpy as np
2 from toqito.perms import swap_operator
3

4 from qustop import Ensemble, OptDist, State
5

6 dim = 2
7 sigma_0 = (
8 np.kron(np.identity(dim), np.identity(dim)) + swap_operator(dim)
9 ) / (dim * (dim + 1))

10 sigma_1 = (
11 np.kron(np.identity(dim), np.identity(dim)) - swap_operator(dim)

(continues on next page)
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(continued from previous page)

12 ) / (dim * (dim - 1))
13

14 ensemble = Ensemble([State(sigma_0, [dim, dim]), State(sigma_1, [dim, dim])])
15

16 expected_val = 1 / 2 + 1 / (dim + 1)
17

18 res = OptDist(ensemble, "ppt", "min-error")
19 res.solve()
20

21 # opt_ppt \approx 0.8333333333668715
22 print(res.value)
23 # Closed-form expression is : 1/2 + 1/(dim+1) = 0.8333333333333333
24 print(expected_val)

12.5 References
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CHAPTER

THIRTEEN

DISTINGUISHING QUANTUM STATES VIA SEPARABLE
MEASUREMENTS

As previously mentioned, optimizing over the set of separable measurements is NP-hard. However, there does exist a
hierarchy of semidefinite programs which eventually does converge to the separable value. This hierarchy is based off
the notion of symmetric extensions. More information about this hierarchy of SDPs can be found here [Nav08].

13.1 Minimum-error distinguishability via separable measurements

Primal:

maximize:
𝑁∑︁

𝑘=1

𝑝𝑘⟨𝜌𝑘, 𝜇(𝑘)⟩,

subject to:
𝑁∑︁

𝑘=1

𝜇(𝑘) = I𝒳⊗𝒴 ,

Tr𝒴2⊗...⊗𝒴𝑠(𝑋𝑘) = 𝜇(𝑘),

(I𝒳 ⊗ Π𝒴𝒴2...𝒴𝑠)𝑋𝑘 (I𝒳 ⊗ Π𝒴𝒴2...𝒴𝑠) = 𝑋𝑘

T𝒳 (𝑋𝑘) ∈ Pos (𝒳 ⊗ 𝒴 ⊗ 𝒴2 ⊗ . . .⊗ 𝒴𝑠) ,

T𝒴2(𝑋𝑘) ∈ Pos (𝒳 ⊗ 𝒴 ⊗ 𝒴2 ⊗ . . .⊗ 𝒴𝑠) ,

...
T𝒴𝑠

(𝑋𝑘) ∈ Pos (𝒳 ⊗ 𝒴 ⊗ 𝒴2 ⊗ . . .⊗ 𝒴𝑠) ,

𝑋1, . . . , 𝑋𝑁 ∈ Pos (𝒳 ⊗ 𝒴 ⊗ 𝒴2 ⊗ . . .⊗ 𝒴𝑠) .

maximize:
𝑁∑︁

𝑘=1

𝑝𝑘⟨𝜌𝑘, 𝜇(𝑘)⟩, subject to:

Tr𝒴2⊗...⊗𝒴𝑠
(𝑋𝑘) = 𝜇(𝑘),

T𝒳 (𝑋𝑘) ∈ Pos (𝒳 ⊗ 𝒴 ⊗ 𝒴2 ⊗ . . .⊗ 𝒴𝑠) ,
...
𝑋1, . . . , 𝑋𝑁 ∈ Pos (𝒳 ⊗ 𝒴 ⊗ 𝒴2 ⊗ . . .⊗ 𝒴𝑠) .
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Dual:
minimize: Tr(𝐻),

subject to: 𝐻 −𝑄𝑘 ≥ 𝑝𝑘𝜌𝑘,

𝑄𝑘 ⊗ I𝒴2⊗...⊗𝒴𝑠
+
(︀
I𝒳 ⊗ Π𝒴𝒴2...𝒴∫

)︀
𝑅𝑘

(︀
I𝒳 ⊗ Π𝒴𝒴2...𝒴∫

)︀
−𝑅𝑘 − T𝒳 (𝑆𝑘) − T𝒴(𝑍𝑘) ∈ Pos(𝒳 ⊗ 𝒴 ⊗ 𝒴2 ⊗ . . .⊗ 𝒴𝑠)

𝐻,𝑄1, . . . , 𝑄𝑁 ∈ Herm(𝒳 ⊗ 𝒴),

𝑅1, . . . 𝑅𝑁 ∈ Herm(𝒳 ⊗ 𝒴 ⊗ 𝒴2 ⊗ . . .⊗ 𝒴𝑠),

𝑆1, . . . , 𝑆𝑁 , 𝑍1, . . . , 𝑍𝑁 ∈ Pos(𝒳 ⊗ 𝒴 ⊗ 𝒴2 ⊗ . . .⊗ 𝒴𝑠).

minimize:
Tr(𝐻), subject to:
𝑄𝑘 ⊗ I𝒴2⊗...⊗𝒴𝑠 +

(︀
I𝒳 ⊗ Π𝒴𝒴2...𝒴∫

)︀
𝑅𝑘

(︀
I𝒳 ⊗ Π𝒴𝒴2...𝒴∫

)︀
𝐻,𝑄1, . . . , 𝑄𝑁 ∈ Herm(𝒳 ⊗ 𝒴),
𝑆1, . . . , 𝑆𝑁 , 𝑍1, . . . , 𝑍𝑁 ∈ Pos(𝒳 ⊗ 𝒴 ⊗ 𝒴2 ⊗ . . .⊗ 𝒴𝑠).

13.2 Entanglement cost of distinguishing Bell states

One may ask whether the ability to distinguish a state can be improved by making use of an auxiliary resource state.

|𝜏𝜖⟩ =

√︂
1 + 𝜖

2
|00⟩ +

√︂
1 − 𝜖

2
|11⟩,

for some 𝜖 ∈ [0, 1].

13.2.1 Distinguishing four Bell states

It was shown in [BCJRWY15] that the probability of distinguishing four Bell states with a resource state via separable
measurements is given by the closed-form expression:

optPPT(𝜂) = optSEP(𝜂) =
1

2

(︁
1 +

√︀
1 − 𝜖2

)︁
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where the ensemble is defined as

𝜂 = {|𝜓0⟩ ⊗ |𝜏𝜖⟩, |𝜓1⟩ ⊗ |𝜏𝜖⟩, |𝜓2⟩ ⊗ |𝜏𝜖⟩, |𝜓3⟩ ⊗ |𝜏𝜖⟩} .

Using qustop, we may encode this scenario as follows.

1 import numpy as np
2 from toqito.states import basis, bell
3

4 from qustop import Ensemble, OptDist, State
5

6 e_0, e_1 = basis(2, 0), basis(2, 1)
7

8 eps = 0.5
9 tau = np.sqrt((1 + eps) / 2) * np.kron(e_0, e_0) + np.sqrt(

10 (1 - eps) / 2
11 ) * np.kron(e_1, e_1)
12

13 dims = [2, 2, 2, 2]
14 ensemble = Ensemble(
15 [
16 State(np.kron(bell(0), tau), dims),
17 State(np.kron(bell(1), tau), dims),
18 State(np.kron(bell(2), tau), dims),
19 State(np.kron(bell(3), tau), dims),
20 ],
21 [1 / 4, 1 / 4, 1 / 4, 1 / 4],
22 )
23

24 ppt_res = OptDist(ensemble, "ppt", "min-error")
25 ppt_res.solve()
26

27 sep_res = OptDist(ensemble, "sep", "min-error")
28 sep_res.solve()
29

30 eq = 1 / 2 * (1 + np.sqrt(1 - eps ** 2))
31

32 # 0.9330127018922193
33 print(eq)
34 # 0.9330127016540999
35 print(ppt_res.value)
36 # 0.9330127016540999
37 print(sep_res.value)

Note that [BCJRWY15] also proved the same closed-form expression for when Alice and Bob make use of PPT mea-
surements (which is an upper bound for separable measurements). More on that in the tutorial on distinguishing via
PPT measurements.
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13.2.2 Distinguishing three Bell states

It was also shown in [BCJRWY15] that the closed-form probability of distinguishing three Bell states with a resource
state using separable measurements to be given by the closed-form expression:

optSEP(𝜂) =
1

3

(︁
2 +

√︀
1 − 𝜖2

)︁

where the ensemble is defined as

𝜂 = (|𝜓0⟩ ⊗ |𝜏𝜖⟩, |𝜓1⟩ ⊗ |𝜏𝜖⟩, |𝜓2⟩ ⊗ |𝜏𝜖⟩) .

Using qustop, we may encode this scenario as follows.

1 import numpy as np
2 from toqito.states import basis, bell
3

4 from qustop import Ensemble, OptDist, State
5

6 e_0, e_1 = basis(2, 0), basis(2, 1)
7

8 eps = 0.5
9 tau = np.sqrt((1 + eps) / 2) * np.kron(e_0, e_0) + np.sqrt(

10 (1 - eps) / 2
11 ) * np.kron(e_1, e_1)
12

13 dims = [2, 2, 2, 2]
14 states = [
15 State(np.kron(bell(0), tau), dims),
16 State(np.kron(bell(1), tau), dims),
17 State(np.kron(bell(2), tau), dims),
18 ]
19 probs = [1 / 3, 1 / 3, 1 / 3]
20 ensemble = Ensemble(states, probs)
21 ensemble.swap([2, 3])
22

23 sep_res = OptDist(ensemble, "sep", "min-error", level=2)
24 sep_res.solve()
25

26 eq = 1 / 3 * (2 + np.sqrt(1 - eps ** 2))
27

28 # 0.9553418012614794
29 print(eq)
30

31 # 0.9583970406126399
32 print(sep_res.value)
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Note that the value of sep_res.value is actually a bit higher than eq. This is because the separable value is calculated
by a hierarchy of SDPs. At low levels of the SDP, the problem can often converge to the optimal value, but other times
it is necessary to compute higher levels of the SDP to eventually arrive at the optimal value. While this is intractable
in general, in practice, the SDP can often converge, or at least get fairly close to the optimal value for small problem
sizes.

13.3 Unextendible product bases and separable measurements

For complex Euclidean spaces 𝒳 and 𝒴 , an unextendable product basis is defined as an orthonormal collection of
vectors

𝒰 = {𝑢1 ⊗ 𝑣1, . . . , 𝑢𝑚 ⊗ 𝑣𝑚} ⊂ 𝒳 ⊗ 𝒴,

for unit vectors 𝑢1, . . . , 𝑢𝑚 ∈ 𝒳 and 𝑣1, . . . , 𝑣𝑚 ∈ 𝒴 where:

1. 𝑚 < dim(𝒳 ⊗ 𝒴).

2. For every 𝑥 ∈ 𝒳 and 𝑦 ∈ 𝒴 satisfying 𝑥⊗ 𝑦 ⊥ 𝒰 it holds that 𝑥⊗ 𝑦 = 0.

All UPBs are known to be indistinguishable by LOCC measurements and all UPBs are distinguishable by PPT mea-
surements. As separable measurements lie in between LOCC and PPT measurements, it is of interest to know which
UPBs are distinguishable by separable measurements.

For instance, in [DMSST99], it was shown that all UPBs in C3 ⊗ C3 are perfectly distinguishable via separable mea-
surements.

Consider the “Tiles” UPB

|𝜑0⟩ = |0⟩
(︁

|0⟩−|1⟩√
2

)︁
, |𝜑1⟩ = |2⟩

(︁
|1⟩−|2⟩√

2

)︁
,

|𝜑2⟩ =
(︁

|0⟩−|1⟩√
2

)︁
|2⟩, |𝜑3⟩ =

(︁
|1⟩−|2⟩√

2

)︁
|0⟩,

|𝜑4⟩ = 1
3 (|0⟩ + |1⟩ + |2⟩) , (|0⟩ + |1⟩ + |2⟩) .

|𝜑3⟩ =

(︂
|1⟩ − |2⟩√

2

)︂
|0⟩, |𝜑4⟩ =

1

3
(|0⟩ + |1⟩ + |2⟩) , (|0⟩ + |1⟩ + |2⟩) .

Note that the “Tiles” states are contained in C3⊗C3. We can use qustop to indeed verify that these states are perfectly
distinguishable via separable measurements.

1 from toqito.states import basis, tile
2

3 from qustop import Ensemble, OptDist, State
4

5 # Construct the corresponding density matrices of the Tiles UPB.
(continues on next page)
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6 dims = [3, 3]
7 ensemble = Ensemble(
8 [
9 State(tile(0) * tile(0).conj().T, dims),

10 State(tile(1) * tile(1).conj().T, dims),
11 State(tile(2) * tile(2).conj().T, dims),
12 State(tile(3) * tile(3).conj().T, dims),
13 State(tile(4) * tile(4).conj().T, dims),
14 ]
15 )
16 res = OptDist(ensemble, "sep", "min-error", level=2)
17 res.solve()
18

19 # 0.999999
20 print(res.value)

In [BCJRWY15], it was shown that the 8-state UPB contained in C4 ⊗ C4 introduced in [Feng06] defined as

|𝜑1⟩ = |0⟩|0⟩, |𝜑5⟩ = (|1⟩ + |2⟩ + |3⟩) (|0⟩ − |1⟩ + |2⟩) /3,
|𝜑2⟩ = |1⟩ (|0⟩ − |2⟩ + |3⟩) /

√
3, |𝜑6⟩ = (|0⟩ − |2⟩ + |3⟩) |2⟩/

√
3,

|𝜑3⟩ = |2⟩ (|0⟩ + |1⟩ − |3⟩) /
√

3, |𝜑7⟩ = (|0⟩ + |1⟩ − |3⟩) |1⟩/
√

3,
|𝜑4⟩ = |3⟩|3⟩, |𝜑8⟩ = (|0⟩ − |1⟩ + |2⟩) (|1⟩ + |2⟩ + |3⟩) /3.

|𝜑6⟩ = (|0⟩ − |2⟩ + |3⟩) |2⟩/
√

3, |𝜑3⟩ = |2⟩ (|0⟩ + |1⟩ − |3⟩) /
√

3,
|𝜑8⟩ = (|0⟩ − |1⟩ + |2⟩) (|1⟩ + |2⟩ + |3⟩) /3.

is not perfectly distinguishable via separable measurements. This can be observed using qustop as follows.

1 import numpy as np
2 from toqito.states import basis
3

4 from qustop import Ensemble, OptDist, State
5

6 e_0, e_1, e_2, e_3 = basis(4, 0), basis(4, 1), basis(4, 2), basis(4, 3)
7

8 phi_1 = np.kron(e_0, e_0)
9 phi_2 = np.kron(e_1, (e_0 - e_2 + e_3) / np.sqrt(3))

10 phi_3 = np.kron(e_2, (e_0 + e_1 - e_3) / np.sqrt(3))
11 phi_4 = np.kron(e_3, e_3)
12 phi_5 = np.kron((e_1 + e_2 + e_3), (e_0 - e_1 + e_2) / 3)
13 phi_6 = np.kron((e_0 - e_2 + e_3), e_2 / np.sqrt(3))
14 phi_7 = np.kron((e_0 + e_1 - e_3), e_1 / np.sqrt(3))
15 phi_8 = np.kron((e_0 - e_1 + e_2), (e_1 + e_2 + e_3) / 3)
16

(continues on next page)
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17 dims = [4, 4]
18 ensemble = Ensemble(
19 [
20 State(phi_1, dims),
21 State(phi_2, dims),
22 State(phi_3, dims),
23 State(phi_4, dims),
24 State(phi_5, dims),
25 State(phi_6, dims),
26 State(phi_7, dims),
27 State(phi_8, dims),
28 ]
29 )
30 res = OptDist(ensemble, "sep", "min-error", level=2)
31 res.solve()
32

33 # 0.9967296337698935
34 print(res.value)

13.3.1 Impossibility to distinguish a UPB plus one extra pure state

It was shown in [BCJRWY15] that if we consider an ensemble of states consisting of a UPB along with a pure state
that is orthogonal to all states in said ensemble, then it is impossible to perfectly distinguish this ensemble.

|𝜑0⟩ = |0⟩
(︁

|0⟩−|1⟩√
2

)︁
, |𝜑1⟩ = |2⟩

(︁
|1⟩−|2⟩√

2

)︁
,

|𝜑2⟩ =
(︁

|0⟩−|1⟩√
2

)︁
|2⟩, |𝜑3⟩ =

(︁
|1⟩−|2⟩√

2

)︁
|0⟩,

|𝜑4⟩ = 1
3 (|0⟩ + |1⟩ + |2⟩) (|0⟩ + |1⟩ + |2⟩) , |𝜑5⟩ = 1

2 (|0⟩|0⟩ + |0⟩|1⟩ − |0⟩|2⟩ − |1⟩|2⟩)

|𝜑3⟩ =

(︂
|1⟩ − |2⟩√

2

)︂
|0⟩, |𝜑4⟩ =

1

3
(|0⟩ + |1⟩ + |2⟩) (|0⟩ + |1⟩ + |2⟩) ,

1 import numpy as np
2 from toqito.states import basis, tile
3

4 from qustop import Ensemble, OptDist, State
5

6 dims = [3, 3]
7 e_0, e_1, e_2 = basis(3, 0), basis(3, 1), basis(3, 2)
8

9 # Define a pure state to add to the ensemble.
10 psi = (
11 1

(continues on next page)
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12 / 2
13 * (
14 np.kron(e_0, e_0)
15 + np.kron(e_0, e_1)
16 - np.kron(e_0, e_2)
17 - np.kron(e_1, e_2)
18 )
19 )
20

21 # Construct the corresponding density matrices of the Tiles UPB + pure state:
22 ensemble = Ensemble(
23 [
24 State(tile(0) * tile(0).conj().T, dims),
25 State(tile(1) * tile(1).conj().T, dims),
26 State(tile(2) * tile(2).conj().T, dims),
27 State(tile(3) * tile(3).conj().T, dims),
28 State(tile(4) * tile(4).conj().T, dims),
29 State(psi * psi.conj().T, dims),
30 ]
31 )
32

33 res = OptDist(ensemble, "sep", "min-error", level=2)
34 res.solve()
35

36 # 0.9860588510298623
37 print(res.value)

13.4 References
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CHAPTER

FOURTEEN

QUANTUM STATE EXCLUSION

In this tutorial, we are going to cover the problem of quantum state exclusion. We are going to briefly describe the
problem setting and then describe how one may use qustop to calculate the optimal probability with which this problem
can be solved for a number of different scenarios.

Quantum state exclusion is very closely related to the problem of quantum state distinguishability. It may be useful to
consult the following tutorial that covers quantum state distinguishability:

• Quantum State Distinguishability

Further information beyond the scope of this tutorial can be found in the text [tPBR12] as well as the course [tBJOP14].

14.1 The state exclusion problem

The quantum state exclusion problem is phrased as follows.

1. Alice possesses an ensemble of 𝑛 quantum states:

𝜂 = ((𝑝0, 𝜌0), . . . , (𝑝𝑛, 𝜌𝑛)) ,

where 𝑝𝑖 is the probability with which state 𝜌𝑖 is selected from the ensemble. Alice picks 𝜌𝑖 with probability 𝑝𝑖 from
her ensemble and sends 𝜌𝑖 to Bob.

2. Bob receives 𝜌𝑖. Both Alice and Bob are aware of how the ensemble is defined but he does not know what index
𝑖 corresponding to the state 𝜌𝑖 he receives from Alice is.

3. Bob wants to guess which of the states from the ensemble he was not given. In order to do so, he may measure
𝜌𝑖 to guess the index 𝑖 for which the state in the ensemble corresponds.

This setting is depicted in the following figure.

Fig. 1: The quantum state exclusion setting.
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Note: The primary difference between the quantum state distinguishability scenario and the quantum state exclusion
scenario is that in the former, Bob want to guess which state he was given, and in the latter, Bob wants to guess which
state he was not given.

14.1.1 Optimal probability of conclusively excluding a quantum state

(TODO)

14.1.2 Optimal probability of unambiguously excluding a quantum state

(TODO)

14.2 References
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CHAPTER

FIFTEEN

QUANTUM STATE CLONING

In this tutorial, we are going to cover the problem of quantum state cloning.
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CHAPTER

SIXTEEN

OPEN PROBLEMS IN QUANTUM STATE OPTIMIZATION

This page consists of certain problems in the domain of quantum state optimization that may be framed as computational
tasks using the qustop module. Most of these examples are provided as brute-force computational approaches. It may
be possible to refine many of these approaches in a more sophisticated manner, and I welcome any such input and
feedback from the community.

16.1 Two-copy problem

16.1.1 Problem statement:

Let 𝑛 ≥ 1 be an integer, let 𝒳 be a compelx Euclidean space, let 𝜌𝑖 ∈ D(𝒳 ) be a pure quantum state represented as a
density operator and let

𝜂 =

{︂(︂
1

𝑛
, 𝜌1

)︂
, . . . ,

(︂
1

𝑛
, 𝜌𝑛

)︂}︂
⊂ 𝒳

be an ensemble of pure and mutually orthogonal quantum states. Define 𝜂⊗2 as the two-copy ensemble where

𝜂⊗2 =

{︂(︂
1

𝑛
, 𝜌1 ⊗ 𝜌1

)︂
, . . . ,

(︂
1

𝑛
, 𝜌𝑛 ⊗ 𝜌𝑛

)︂}︂
⊂ 𝒳 ⊗ 𝒳 .

Question: Does there exist a certain ensemble 𝜂⊗2 such that

optPPT
(︀
𝜂⊗2

)︀
< 1 or optSEP

(︀
𝜂⊗2

)︀
< 1?

16.1.2 Computational approach:

The computational approach here is to generate a random ensemble of quantum states and then construct two copies of
that ensemble. We take the two-copy ensemble and check whether or not we get a value less than 1 for distinguishing
via PPT measurements.

1 import pickle
2

3 import numpy as np
4 from scipy.stats import unitary_group
5

6 from qustop import Ensemble, OptDist, State
7

8

(continues on next page)
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9 def generate_random_two_copy_ensemble(num_states: int) -> Ensemble:
10 # Generate an ensemble of random mutually orthogonal and pure states.
11 # In this case, the ensemble consists of four states, but we could
12 # potentially have any n >= 1 number of states in the ensemble.
13 group = unitary_group.rvs(num_states)
14 states = [np.atleast_2d(group[:, i]).T for i in range(num_states)]
15

16 # Create the two-copy ensemble.
17 dims = [2] * num_states
18 ensemble = [
19 State(np.kron(state, state), dims) for _, state in enumerate(states)
20 ]
21 return Ensemble(ensemble)
22

23

24 def run(num_states: int, num_trials: int) -> None:
25 for test in range(num_trials):
26 ensemble_2_copies = generate_random_two_copy_ensemble(num_states)
27

28 # Solve the two-copy PPT distinguishability SDPs.
29 ppt_2_copy = OptDist(ensemble_2_copies, "ppt", "min-error")
30 ppt_2_copy.solve()
31

32 # If the PPT value of the two-copy ensemble is below some threshold
33 # of perfect distinguishability, such an example has been found, in
34 # which case, we want to ensure we capture the values and states!
35 if not np.isclose(ppt_2_copy.value, 1, atol=0.001):
36 print(f"PPT 2-copy: {ppt_2_copy.value}")
37 with open("FOUND.pickle", "wb") as f:
38 pickle.dump([ensemble_2_copies], f)
39 break
40

41 # In any case, print out the two-copy values of the ensembles
42 # as we progress through the trials.
43 print(f"PPT 2-copy: {ppt_2_copy.value}")

One can specify the num_states parameter to determine how many states are in the ensemble and can also modify
the num_trials parameter to specify for how many random ensembles should be generated and checked.

For instance, here we can randomly generate a 4-state two-copy ensemble 5 different times:

>>> run(num_states=4, num_trials=5)
PPT 2-copy: 0.9999999997183334
PPT 2-copy: 1.0000000011197347
PPT 2-copy: 1.000000005640175
PPT 2-copy: 1.0000000003272558
PPT 2-copy: 0.9999999981951567
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16.2 Entanglement cost of distinguishing four arbitrary two-qubit en-
semble with resource state

16.2.1 Problem statement:

Let C2 = 𝒳1 = 𝒳2 = 𝒴1 = 𝒴2 be complex Euclidean spaces and let 𝒳 = 𝒳1 ⊗ 𝒳2 and 𝒴 = 𝒴1 ⊗ 𝒴2. Define the
following orthogonal two-qubit basis

|𝜓0⟩ = 𝛼|00⟩ + 𝛽|11⟩, |𝜓1⟩ = 𝛽|00⟩ − 𝛼|11⟩,
|𝜓2⟩ = 𝛼|01⟩ + 𝛽|10⟩, |𝜓3⟩ = 𝛽|01⟩ − 𝛼|10⟩,

where |𝜓𝑖⟩ ∈ 𝒳1 ⊗ 𝒴1 for all 𝑖 ∈ [0, 1, 2, 3] and where

𝛼 =

√︂
1 + 𝑛

2
and 𝛽 =

√︂
1 − 𝑛

2
.

Define the resource state

|𝜏𝜖⟩ =

√︂
1 + 𝜖

2
|00⟩ +

√︂
1 − 𝜖

2
|11⟩ ∈ 𝒳2 ⊗ 𝒴2

for some choice of 𝜖 ∈ [0, 1].

Consider the ensemble

𝜂 = {|𝜓0⟩ ⊗ |𝜏𝜖⟩, |𝜓1⟩ ⊗ |𝜏𝜖⟩, |𝜓2⟩ ⊗ |𝜏𝜖⟩, |𝜓3⟩ ⊗ |𝜏𝜖⟩} ⊂ 𝒳 ⊗ 𝒴.

Question: Assuming a uniform distribution 𝑝1 = 𝑝2 = 𝑝3 = 𝑝4 = 1/4, with any state from 𝜂 being selected, what is
the closed-form entanglement cost of distinguishing 𝜂 via PPT measurements for any choice of 𝛼 and 𝛽?

Note: When 𝛼 = 𝛽 = 1√
2
, the ensemble 𝜂 consists of the Bell states. In this case, it is known that the closed-form

entanglement cost is

1

2

(︁
1 +

√︀
1 − 𝜖2

)︁
.

Follow-up Question: Assuming a uniform distribution 𝑝1 = 𝑝2 = 𝑝3 = 𝑝4 = 1/4, with any state from 𝜂 being
selected, what is the closed-form entanglement cost of distinguishing 𝜂 via separable measurements for any choice of
𝛼 and 𝛽?

This question will most likely be more difficult than the PPT case, but it’s still worth asking.

16.2.2 Computational approach:

Consider the following snippet of code that considers this problem:

16.2. Entanglement cost of distinguishing four arbitrary two-qubit ensemble with resource state57
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1 import numpy as np
2 from toqito.states import basis
3

4 from qustop import Ensemble, OptDist, State
5

6 # Define the |0> and |1> basis states:
7 e_0, e_1 = basis(2, 0), basis(2, 1)
8

9 # Define constants "n" and "epsilon":
10 n = 0.5
11 eps = 0.0
12

13 # Parameters alpha and beta are defined in terms of "n"
14 alpha, beta = np.sqrt((1 + n) / 2), np.sqrt((1 - n) / 2)
15

16 # Define the two-qubit ensemble states:
17 psi_0 = alpha * np.kron(e_0, e_0) + beta * np.kron(e_1, e_1)
18 psi_1 = beta * np.kron(e_0, e_0) - alpha * np.kron(e_1, e_1)
19 psi_2 = alpha * np.kron(e_0, e_1) + beta * np.kron(e_1, e_0)
20 psi_3 = beta * np.kron(e_0, e_1) - alpha * np.kron(e_1, e_0)
21

22 # Define the resource state:
23 tau_state = np.sqrt((1 + eps) / 2) * np.kron(e_0, e_0) + np.sqrt(
24 (1 - eps) / 2
25 ) * np.kron(e_1, e_1)
26 tau = tau_state * tau_state.conj().T
27

28 # Create the ensemble to distinguish:
29 dims = [2, 2, 2, 2]
30 rho_0 = State(np.kron(psi_0 * psi_0.conj().T, tau), dims)
31 rho_1 = State(np.kron(psi_1 * psi_1.conj().T, tau), dims)
32 rho_2 = State(np.kron(psi_2 * psi_2.conj().T, tau), dims)
33 rho_3 = State(np.kron(psi_3 * psi_3.conj().T, tau), dims)
34 ensemble = Ensemble([rho_0, rho_1, rho_2, rho_3])
35

36 # Determine the optimal value of distinguishing the ensemble via PPT
37 # measurements:
38 ppt_res = OptDist(ensemble, "ppt", "min-error")
39 ppt_res.solve()
40

41 # Print value of "n", "eps", and the optimal value of distinguishing via PPT
42 # measurements:
43 print(f"For n = {n} and eps={eps}, the PPT value is {ppt_res.value}")

Is it possible to determine a closed form of the optimal value of distinguishing via PPT measurements for any choice
of n and eps? It may be illuminating to alter these values and see if any obvious closed-form expressions emerge.

It is also possible to alter the ppt argument to sep to get a sense on the follow-up question. However, keep in mind
that the computational technique used to compute separable values is an upper bound–a hierarchy of SDPs that will
eventually converge, but may take substantial computational resources and time to do so.
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16.3 Entanglement cost of distinguishing three arbitrary two-qubit
ensemble with resource state

16.3.1 Problem statement:

Let C2 = 𝒳1 = 𝒳2 = 𝒴1 = 𝒴2 be complex Euclidean spaces and let 𝒳 = 𝒳1 ⊗ 𝒳2 and 𝒴 = 𝒴1 ⊗ 𝒴2. Define the
following orthogonal two-qubit basis

|𝜓0⟩ = 𝛼|00⟩ + 𝛽|11⟩, |𝜓1⟩ = 𝛽|00⟩ − 𝛼|11⟩,
|𝜓2⟩ = 𝛼|01⟩ + 𝛽|10⟩,

where |𝜓𝑖⟩ ∈ 𝒳1 ⊗ 𝒴1 for all 𝑖 ∈ [0, 1, 2] and where

𝛼 =

√︂
1 + 𝑛

2
and 𝛽 =

√︂
1 − 𝑛

2
.

Define the resource state

|𝜏𝜖⟩ =

√︂
1 + 𝜖

2
|00⟩ +

√︂
1 − 𝜖

2
|11⟩ ∈ 𝒳2 ⊗ 𝒴2

for some choice of 𝜖 ∈ [0, 1].

Consider the ensemble

𝜂 = {|𝜓0⟩ ⊗ |𝜏𝜖⟩, |𝜓1⟩ ⊗ |𝜏𝜖⟩, |𝜓2⟩ ⊗ |𝜏𝜖⟩, } ⊂ 𝒳 ⊗ 𝒴.

Question: Assuming a uniform distribution 𝑝1 = 𝑝2 = 𝑝3 = 1/3, with any state from 𝜂 being selected, what is the
closed-form entanglement cost of distinguishing 𝜂 via PPT measurements for any choice of 𝛼 and 𝛽?

Note: When 𝛼 = 𝛽 = 1√
2
, the ensemble 𝜂 consists of the Bell states. In this case, it is known that the closed-form

entanglement cost for separable measurements is

1

3

(︁
2 +

√︀
1 − 𝜖2

)︁
.

A simpler version of this question is to determine optPPT(𝜂) for 𝑛 = 0 for any 𝜖.

Since optSEP(𝜂) < optPPT(𝜂), we have a lower bound on optPPT(𝜂) when 𝑛 = 0. It also holds that optPOS(𝜂) = 1 for
all 𝑛 and 𝜖, so we have an obvious upper bound.

16.3.2 Computational approach:

Consider the following snippet of code that considers this problem:
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1 import numpy as np
2 from toqito.states import basis
3

4 from qustop import Ensemble, OptDist, State
5

6 # Define the |0> and |1> basis states:
7 e_0, e_1 = basis(2, 0), basis(2, 1)
8

9 # Define constants "n" and "epsilon":
10 n = 0.0
11 eps = 0.75
12

13 # Parameters alpha and beta are defined in terms of "n"
14 alpha, beta = np.sqrt((1 + n) / 2), np.sqrt((1 - n) / 2)
15

16 # Define the two-qubit ensemble states:
17 psi_0 = alpha * np.kron(e_0, e_0) + beta * np.kron(e_1, e_1)
18 psi_1 = beta * np.kron(e_0, e_0) - alpha * np.kron(e_1, e_1)
19 psi_2 = alpha * np.kron(e_0, e_1) + beta * np.kron(e_1, e_0)
20

21 # Define the resource state:
22 tau_state = np.sqrt((1 + eps) / 2) * np.kron(e_0, e_0) + np.sqrt(
23 (1 - eps) / 2
24 ) * np.kron(e_1, e_1)
25 tau = tau_state * tau_state.conj().T
26

27 # Create the ensemble to distinguish:
28 dims = [2, 2, 2, 2]
29 rho_0 = State(np.kron(psi_0 * psi_0.conj().T, tau), dims)
30 rho_1 = State(np.kron(psi_1 * psi_1.conj().T, tau), dims)
31 rho_2 = State(np.kron(psi_2 * psi_2.conj().T, tau), dims)
32 ensemble = Ensemble([rho_0, rho_1, rho_2])
33

34 # Determine the optimal value of distinguishing the ensemble via PPT
35 # measurements:
36 ppt_res = OptDist(ensemble, "ppt", "min-error")
37 ppt_res.solve()
38

39 # Print value of "n", "eps", and the optimal value of distinguishing via PPT
40 # measurements:
41 print(f"For n = {n} and eps={eps}, the PPT value is {ppt_res.value}")
42 sep_eq = 1 / 3 * (2 + np.sqrt(1 - eps ** 2))
43 eq = 1 / 3 * (2 + np.sqrt(1.219 - eps ** 2))
44 print(f"EQ:{eq}")
45 print(f"SEP_EQ: {sep_eq}")
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16.4 Separation between LOCC and separable value

16.4.1 Problem statement:

Does there exist an ensemble, 𝜂, fully composed of orthogonal maximally entangled states for which the following
strict inequality holds:

optLOCC(𝜂) < optSEP(𝜂)?

The mathematical structure of LOCC is difficult to generalize, but it is possible to computationally analyze the separable
case via a hierarchy of semidefinite programs.

16.5 The antidistinguishability conjecture

A set of 𝑛 pure quantum states |𝜌1⟩, . . . , |𝜌𝑛⟩ are antidistinguishable if there exists an 𝑛-outcome measurement that
never outputs the result 𝑖 on |𝜌𝑖⟩.

16.5.1 Problem statement:

Let |𝜌1⟩, . . . , |𝜌𝑑⟩ be 𝑑 pure quantum states each of dimension 𝑑. If

|⟨𝜌𝑖|𝜌𝑗⟩| ≤ (𝑑− 2)/(𝑑− 1)

for all 𝑖 ̸= 𝑗, then the states are antidistinguishable.

Question: Does this conjecture hold for all integers 𝑑?

Note: This conjecture is known to hold when 𝑑 = 2 and 𝑑 = 3.

16.5.2 Computational approach:

We can randomly generate an ensemble of 𝑑 pure states of dimension 𝑑 using the following function.

X

Next, we check whether the states are antidistinguishable. This is equivalent to checking whether the optimal
value of the semidefinite program for the problem for the problem of unambiguous quantum state exclusion from
[arXiv:1306.4683](https://arxiv.org/pdf/1306.4683.pdf) yields a non-zero result.

If the states are distinguishable, check the bound in the conjecture:

• If the bound is satisfied it implies a satisfaction of the conjecture, so we go back to the beginning and try to
generate another random ensemble.

• If the bound is not satisfied, this implies a violation of the conjecture.
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